lunes, 13 de junio de 2016

Desviación estándar 
La desviación estándar o desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación estándar se representa por σ.
de relación típicadesviación

Desviación estándar para datos agrupados

desviación típicadesviación
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
desviación típicadesviación típica

Desviación estándar para datos agrupados

desviación típicadesviación típica

Ejercicios

Calcular la desviación estándar de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
Desviación típica
Varianza 
Esta medida nos permite identificar la diferencia promedio que hay entre cada uno de los valores respecto a su punto central (Media ). Este promedio es calculado, elevando cada una de las diferencias al cuadrado (Con el fin de eliminar los signos negativos), y calculando su promedio o media; es decir, sumado todos los cuadrados de las diferencias de cada valor respecto a la media y dividiendo este resultado por el número de observaciones que se tengan. Si la varianza es calculada a una población (Total de componentes de un conjunto), la ecuación sería:
Ecuación de la varianza para Poblaciones - Medidas de Dispersion
Ecuación 5-6
Donde () representa la varianza, (Xi) representa cada uno de los valores, () representa la media poblacional y (N) es el número de observaciones ó tamaño de la población. En el caso que estemos trabajando con una muestra la ecuación que se debe emplear es:
Ecuacion de la Varianza para una muestra - Medidas de dispersion
Moda.
La moda es el valor que tiene mayor frecuencia absoluta.
Se representa por Mo.
Se puede hallar la moda para variables cualitativas y cuantitativas.
Hallar la moda de la distribución:
2, 3, 3, 4, 4, 4, 5, 5 Mo= 4
Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribución es bimodal o multimodal, es decir, tiene varias modas.
1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9Mo= 1, 5, 9
Cuando todas las puntuaciones de un grupo tienen la misma frecuenciano hay moda.
2, 2, 3, 3, 6, 6, 9, 9
Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes.
0, 1, 3, 3, 5, 5, 7, 8Mo = 4
Media.
Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.

Cálculo de la mediana

Ordenamos los datos de menor a mayor.
Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
Si la serie tiene un número par de puntuaciones la mediana es la media entre las dospuntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5

Cálculo de la mediana para datos agrupados

La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre cociente.
mediana





No hay comentarios:

Publicar un comentario