La desviación estándar o desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación estándar se representa por σ.
Desviación estándar para datos agrupados
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
Desviación estándar para datos agrupados
Ejercicios
Calcular la desviación estándar de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Varianza
Esta medida nos permite identificar la diferencia promedio que hay entre cada uno de los valores respecto a su punto central (Media ). Este promedio es calculado, elevando cada una de las diferencias al cuadrado (Con el fin de eliminar los signos negativos), y calculando su promedio o media; es decir, sumado todos los cuadrados de las diferencias de cada valor respecto a la media y dividiendo este resultado por el número de observaciones que se tengan. Si la varianza es calculada a una población (Total de componentes de un conjunto), la ecuación sería:
Donde () representa la varianza, (Xi) representa cada uno de los valores, () representa la media poblacional y (N) es el número de observaciones ó tamaño de la población. En el caso que estemos trabajando con una muestra la ecuación que se debe emplear es:
No hay comentarios:
Publicar un comentario